Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Microbiome ; 11(1): 127, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37271810

ABSTRACT

BACKGROUND: Bacteria colonizing the nasopharynx play a key role as gatekeepers of respiratory health. Yet, dynamics of early life nasopharyngeal (NP) bacterial profiles remain understudied in low- and middle-income countries (LMICs), where children have a high prevalence of risk factors for lower respiratory tract infection. We investigated longitudinal changes in NP bacterial profiles, and associated exposures, among healthy infants from low-income households in South Africa. METHODS: We used short fragment (V4 region) 16S rRNA gene amplicon sequencing to characterize NP bacterial profiles from 103 infants in a South African birth cohort, at monthly intervals from birth through the first 12 months of life and six monthly thereafter until 30 months. RESULTS: Corynebacterium and Staphylococcus were dominant colonizers at 1 month of life; however, these were rapidly replaced by Moraxella- or Haemophilus-dominated profiles by 4 months. This succession was almost universal and largely independent of a broad range of exposures. Warm weather (summer), lower gestational age, maternal smoking, no day-care attendance, antibiotic exposure, or low height-for-age z score at 12 months were associated with higher alpha and beta diversity. Summer was also associated with higher relative abundances of Staphylococcus, Streptococcus, Neisseria, or anaerobic gram-negative bacteria, whilst spring and winter were associated with higher relative abundances of Haemophilus or Corynebacterium, respectively. Maternal smoking was associated with higher relative abundances of Porphyromonas. Antibiotic therapy (or isoniazid prophylaxis for tuberculosis) was associated with higher relative abundance of anerobic taxa (Porphyromonas, Fusobacterium, and Prevotella) and with lower relative abundances of health associated-taxa Corynebacterium and Dolosigranulum. HIV-exposure was associated with higher relative abundances of Klebsiella or Veillonella and lower relative abundances of an unclassified genus within the family Lachnospiraceae. CONCLUSIONS: In this intensively sampled cohort, there was rapid and predictable replacement of early profiles dominated by health-associated Corynebacterium and Dolosigranulum with those dominated by Moraxella and Haemophilus, independent of exposures. Season and antibiotic exposure were key determinants of NP bacterial profiles. Understudied but highly prevalent exposures prevalent in LMICs, including maternal smoking and HIV-exposure, were associated with NP bacterial profiles. Video Abstract.


Subject(s)
HIV Infections , Microbiota , Infant , Child , Humans , Infant, Newborn , South Africa , Birth Cohort , RNA, Ribosomal, 16S/genetics , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Moraxella/genetics , Corynebacterium/genetics , Anti-Bacterial Agents/therapeutic use , HIV Infections/drug therapy
2.
PLoS Comput Biol ; 17(3): e1008857, 2021 03.
Article in English | MEDLINE | ID: mdl-33780444

ABSTRACT

To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately identify potential novelty with higher throughput and reduced labor. Here we describe an explainable artificial intelligence classification methodology that emphasizes prediction performance and human interpretability by using a Hierarchical Ensemble of Classifiers model optimized with a novel feature selection algorithm called Clairvoyance; collectively referred to as a CoHEC model. We evaluated our methods using whole transcriptome responses from Escherichia coli challenged with 41 known antibiotics and 9 crude extracts while depositing 122 transcriptomes unique to this study. Our CoHEC model can properly predict the primary MOA of previously unobserved compounds in both purified forms and crude extracts at an accuracy above 99%, while also correctly identifying darobactin, a newly discovered antibiotic, as having a novel MOA. In addition, we deploy our methods on a recent E. coli transcriptomics dataset from a different strain and a Mycobacterium smegmatis metabolomics timeseries dataset showcasing exceptionally high performance; improving upon the performance metrics of the original publications. We not only provide insight into the biological interpretation of our model but also that the concept of MOA is a non-discrete heuristic with diverse effects for different compounds within the same MOA, suggesting substantial antibiotic diversity awaiting discovery within existing MOA.


Subject(s)
Anti-Infective Agents/pharmacology , Artificial Intelligence , Drug Resistance, Bacterial/genetics , Metabolome/genetics , Phenylpropionates/pharmacology , Transcriptome/genetics , Algorithms , Computational Biology/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Metabolome/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Transcriptome/drug effects
3.
Microb Genom ; 6(12)2020 12.
Article in English | MEDLINE | ID: mdl-33245689

ABSTRACT

Mucormycoses are invasive infections by Rhizopus species and other Mucorales. Over 10 months, four solid organ transplant (SOT) recipients at our centre developed mucormycosis due to Rhizopus microsporus (n=2), R. arrhizus (n=1) or Lichtheimia corymbifera (n=1), at a median 31.5 days (range: 13-34) post-admission. We performed whole genome sequencing (WGS) on 72 Mucorales isolates (45 R. arrhizus, 19 R. delemar, six R. microsporus, two Lichtheimia species) from these patients, from five patients with community-acquired mucormycosis, and from hospital and regional environments. Isolates were compared by core protein phylogeny and global genomic features, including genome size, guanine-cytosine percentages, shared protein families and paralogue expansions. Patient isolates fell into six core phylogenetic lineages (clades). Phylogenetic and genomic similarities of R. microsporus isolates recovered 7 months apart from two SOT recipients in adjoining hospitals suggested a potential common source exposure. However, isolates from other patients and environmental sites had unique genomes. Many isolates that were indistinguishable by core phylogeny were distinct by one or more global genomic comparisons. Certain clades were recovered throughout the study period, whereas others were found at particular time points. In conclusion, mucormycosis cases could not be genetically linked to a definitive environmental source. Comprehensive genomic analyses eliminated false associations between Mucorales isolates that would have been assigned using core phylogenetic or less extensive genomic comparisons. The genomic diversity of Mucorales mandates that multiple isolates from individual patients and environmental sites undergo WGS during epidemiological investigations. However, exhaustive surveillance of fungal populations in a hospital and surrounding community is probably infeasible.


Subject(s)
Community-Acquired Infections/microbiology , Cross Infection/microbiology , Mucorales/classification , Mucormycosis/diagnosis , Transplants/microbiology , Whole Genome Sequencing/methods , Base Composition , Female , Genetic Variation , Genome Size , High-Throughput Nucleotide Sequencing , Humans , Male , Mucorales/genetics , Mucorales/isolation & purification , Mucormycosis/microbiology , Phylogeny
4.
Front Public Health ; 8: 543898, 2020.
Article in English | MEDLINE | ID: mdl-33072693

ABSTRACT

Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.


Subject(s)
Anti-Bacterial Agents , Pneumococcal Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Infant , Metagenome , Pneumococcal Infections/epidemiology , Streptococcus pneumoniae/genetics
5.
PLoS One ; 15(4): e0231887, 2020.
Article in English | MEDLINE | ID: mdl-32320455

ABSTRACT

INTRODUCTION: Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. METHODS: As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. RESULTS: AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. CONCLUSION: This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.


Subject(s)
Metagenomics , Nasopharynx/microbiology , Sequence Analysis, DNA , Anti-Bacterial Agents/pharmacology , Cohort Studies , Female , Humans , Infant , Longitudinal Studies , Male , Nasopharynx/drug effects , South Africa , Streptococcus/drug effects , Streptococcus/genetics , Streptococcus/physiology
6.
PLoS One ; 15(2): e0227152, 2020.
Article in English | MEDLINE | ID: mdl-32074104

ABSTRACT

The opportunistic pathogens Burkholderia cepacia and Burkholderia contaminans, both genomovars of the Burkholderia cepacia complex (BCC), are frequently cultured from the potable water dispenser (PWD) of the International Space Station (ISS). Here, we sequenced the genomes and conducted phenotypic assays to characterize these Burkholderia isolates. All recovered isolates of the two species fall within monophyletic clades based on phylogenomic trees of conserved single-copy core genes. Within species, the ISS-derived isolates all demonstrate greater than 99% average nucleotide identity (with 95-99% of genomes aligning) and share around 90% of the identified gene clusters from a pangenomic analysis-suggesting that the two groups are each composed of highly similar genomic lineages and their members may have all stemmed from the same two founding populations. The differences that can be observed between the recovered isolates at the pangenomic level are primarily located within putative plasmids. Phenotypically, macrophage intracellularization and lysis occurred at generally similar rates between all ISS-derived isolates, as well as with their respective type-terrestrial strain references. All ISS-derived isolates exhibited antibiotic sensitivity similar to that of the terrestrial reference strains, and minimal differences between isolates were observed. With a few exceptions, biofilm formation rates were generally consistent across each species. And lastly, though isolation date does not necessarily provide any insight into how long a given isolate had been aboard the ISS, none of the assayed physiology correlated with either date of isolation or distances based on nucleotide variation. Overall, we find that while the populations of Burkholderia present in the ISS PWS each maintain virulence, they are likely are not more virulent than those that might be encountered on planet and remain susceptible to clinically used antibiotics.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia cepacia , Burkholderia , Drinking Water/microbiology , Phylogeny , Spacecraft , Burkholderia/classification , Burkholderia/isolation & purification , Burkholderia/pathogenicity , Burkholderia cepacia/classification , Burkholderia cepacia/isolation & purification , Burkholderia cepacia/pathogenicity , Virulence
7.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31948962

ABSTRACT

The annotated genome of Aspergillus tanneri, a recently discovered drug-resistant pathogen, was determined by employing the Oxford Nanopore MinION platform and the Funannotate pipeline. The genome size and the number of protein-coding genes are notably larger than those of the most common etiological agent of aspergillosis, Aspergillus fumigatus.

8.
Article in English | MEDLINE | ID: mdl-31907190

ABSTRACT

Antimicrobial resistance (AMR) is an ever-growing public health problem worldwide. The low rate of antibiotic discovery coupled with the rapid spread of drug-resistant bacterial pathogens is causing a global health crisis. To facilitate the drug discovery processes, we present a large-scale study of reference antibiotic challenge bacterial transcriptome profiles, which included 37 antibiotics across 6 mechanisms of actions (MOAs) and provide an economical approach to aid in antimicrobial dereplication in the discovery process. We demonstrate that classical MOAs can be sorted based upon the magnitude of gene expression profiles despite some overlap in the secondary effects of antibiotic exposures across MOAs. Additionally, using gene subsets, we were able to subdivide broad MOA classes into subMOAs. Furthermore, we provide a biomarker gene set that can be used to classify most antimicrobial challenges according to their canonical MOA. We also demonstrate the ability of this rapid MOA diagnostic tool to predict and classify the expression profiles of pure compounds and crude extracts to their expression profile-associated MOA class.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gene Expression Profiling/methods , Anti-Infective Agents/pharmacology , Drug Discovery/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Sensitivity Tests
9.
PLoS One ; 13(7): e0199169, 2018.
Article in English | MEDLINE | ID: mdl-29966003

ABSTRACT

Aspergillus flavus is a saprophytic fungus that infects corn, peanuts, tree nuts and other agriculturally important crops. Once the crop is infected the fungus has the potential to secrete one or more mycotoxins, the most carcinogenic of which is aflatoxin. Aflatoxin contaminated crops are deemed unfit for human or animal consumption, which results in both food and economic losses. Within A. flavus, two morphotypes exist: the S strains (small sclerotia) and L strains (large sclerotia). Significant morphological and physiological differences exist between the two morphotypes. For example, the S-morphotypes produces sclerotia that are smaller (< 400 µm), greater in quantity, and contain higher concentrations of aflatoxin than the L-morphotypes (>400 µm). The morphotypes also differ in pigmentation, pH homeostasis in culture and the number of spores produced. Here we report the first full genome sequence of an A. flavus S morphotype, strain AF70. We provide a comprehensive comparison of the A. flavus S-morphotype genome sequence with a previously sequenced genome of an L-morphotype strain (NRRL 3357), including an in-depth analysis of secondary metabolic clusters and the identification SNPs within their aflatoxin gene clusters.


Subject(s)
Aspergillus flavus/genetics , Genome, Fungal/genetics , Plant Diseases/genetics , Spores, Fungal/genetics , Aflatoxins/genetics , Aflatoxins/toxicity , Arachis/microbiology , Aspergillus flavus/classification , Aspergillus flavus/pathogenicity , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Nuts/microbiology , Plant Diseases/microbiology , Spores, Fungal/pathogenicity , Zea mays/microbiology
10.
Sci Rep ; 8(1): 5078, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29567959

ABSTRACT

There are limited data on meconium and faecal bacterial profiles from African infants and their mothers. We characterized faecal bacterial communities of infants and mothers participating in a South African birth cohort. Stool and meconium specimens were collected from 90 mothers and 107 infants at birth, and from a subset of 72 and 36 infants at 4-12 and 20-28 weeks of age, respectively. HIV-unexposed infants were primarily exclusively breastfed at 4-12 (49%, 26/53) and 20-28 weeks (62%, 16/26). In contrast, HIV-exposed infants were primarily exclusively formula fed at 4-12 (53%; 10/19) and 20-28 weeks (70%, 7/10). Analysis (of the bacterial 16S rRNA gene sequences of the V4 hypervariable region) of the 90 mother-infant pairs showed that meconium bacterial profiles [dominated by Proteobacteria (89%)] were distinct from those of maternal faeces [dominated by Firmicutes (66%) and Actinobacteria (15%)]. Actinobacteria predominated at 4-12 (65%) and 20-28 (50%) weeks. HIV-exposed infants had significantly higher faecal bacterial diversities at both 4-12 (p = 0.026) and 20-28 weeks (p = 0.002). HIV-exposed infants had lower proportions of Bifidobacterium (p = 0.010) at 4-12 weeks. Maternal faecal bacterial profiles were influenced by HIV status, feeding practices and mode of delivery. Further longitudinal studies are required to better understand how these variables influence infant and maternal faecal bacterial composition.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/genetics , HIV Infections/microbiology , Meconium/microbiology , Adult , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Breast Feeding , Feces/virology , Feeding Behavior , Female , Firmicutes/genetics , Firmicutes/isolation & purification , HIV/genetics , HIV/pathogenicity , HIV Infections/genetics , HIV Infections/virology , Humans , Infant , Infant Formula/microbiology , Infant, Newborn , Meconium/virology , Mothers , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , South Africa/epidemiology
11.
Mol Microbiol ; 106(6): 861-875, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28922497

ABSTRACT

Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.


Subject(s)
Aspergillus fumigatus/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Calcineurin/metabolism , Calcium Signaling/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal/physiology , Host-Pathogen Interactions , Humans , Hydrogen-Ion Concentration , Loss of Function Mutation , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Front Microbiol ; 8: 1661, 2017.
Article in English | MEDLINE | ID: mdl-28932211

ABSTRACT

Pneumococcal pneumonia has decreased significantly since the implementation of the pneumococcal conjugate vaccine (PCV), nevertheless, in many developing countries pneumonia mortality in infants remains high. We have undertaken a study of the nasopharyngeal (NP) microbiome during the first year of life in infants from The Philippines and South Africa. The study entailed the determination of the Streptococcus sp. carriage using a lytA qPCR assay, whole metagenomic sequencing, and in silico serotyping of Streptococcus pneumoniae, as well as 16S rRNA amplicon based community profiling. The lytA carriage in both populations increased with infant age and lytA+ samples ranged from 24 to 85% of the samples at each sampling time point. We next developed informatic tools for determining Streptococcus community composition and pneumococcal serotype from metagenomic sequences derived from a subset of longitudinal lytA-positive Streptococcus enrichment cultures from The Philippines (n = 26 infants, 50% vaccinated) and South African (n = 7 infants, 100% vaccinated). NP samples from infants were passaged in enrichment media, and metagenomic DNA was purified and sequenced. In silico capsular serotyping of these 51 metagenomic assemblies assigned known serotypes in 28 samples, and the co-occurrence of serotypes in 5 samples. Eighteen samples were not typeable using known serotypes but did encode for capsule biosynthetic cluster genes similar to non-encapsulated reference sequences. In addition, we performed metagenomic assembly and 16S rRNA amplicon profiling to understand co-colonization dynamics of Streptococcus sp. and other NP genera, revealing the presence of multiple Streptococcus species as well as potential respiratory pathogens in healthy infants. A range of virulence and drug resistant elements were identified as circulating in the NP microbiomes of these infants. This study revealed the frequent co-occurrence of multiple S. pneumoniae strains along with Streptococcus sp. and other potential pathogens such as S. aureus in the NP microbiome of these infants. In addition, the in silico serotype analysis proved powerful in determining the serotypes in S. pneumoniae carriage, and may lead to developing better targeted vaccines to prevent invasive pneumococcal disease (IPD) in these countries. These findings suggest that NP colonization by S. pneumoniae during the first years of life is a dynamic process involving multiple serotypes and species.

13.
Microb Biotechnol ; 10(2): 296-322, 2017 03.
Article in English | MEDLINE | ID: mdl-27273822

ABSTRACT

Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.


Subject(s)
Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus/physiology , Aspergillus/pathogenicity , Biophysical Phenomena , Host-Pathogen Interactions , Animals , Aspergillosis/diagnosis , Diagnostic Tests, Routine , Ecosystem , Humans
14.
Microb Ecol ; 73(3): 658-667, 2017 04.
Article in English | MEDLINE | ID: mdl-27896376

ABSTRACT

Most antibiotics were discovered by screening soil actinomycetes, but the efficiency of the discovery platform collapsed in the 1960s. By now, more than 3000 antibiotics have been described and most of the current discovery effort is focused on the rediscovery of known compounds, making the approach impractical. The last marketed broad-spectrum antibiotics discovered were daptomycin, linezolid, and fidaxomicin. The current state of the art in the development of new anti-infectives is a non-existent pipeline in the absence of a discovery platform. This is particularly troubling given the emergence of pan-resistant pathogens. The current practice in dealing with the problem of the background of known compounds is to use chemical dereplication of extracts to assess the relative novelty of a compound it contains. Dereplication typically requires scale-up, extraction, and often fractionation before an accurate mass and structure can be produced by MS analysis in combination with 2D NMR. Here, we describe a transcriptome analysis approach using RNA sequencing (RNASeq) to identify promising novel antimicrobial compounds from microbial extracts. Our pipeline permits identification of antimicrobial compounds that produce distinct transcription profiles using unfractionated cell extracts. This efficient pipeline will eliminate the requirement for purification and structure determination of compounds from extracts and will facilitate high-throughput screen of cell extracts for identification of novel compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Gene Expression Profiling/methods , Staphylococcus aureus/drug effects , Streptomyces/metabolism , Biological Transport/genetics , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Sequence Analysis, RNA , Staphylococcus aureus/genetics
15.
Open Forum Infect Dis ; 3(3): ofw120, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27703990

ABSTRACT

We used ribonucleic acid sequencing to profile Candida albicans transcription within biliary fluid from a patient with cholangitis; samples were collected before and after treatment with fluconazole and drainage. Candida albicans transcriptomes at the infection site distinguished treated from untreated cholangitis. After treatment, 1131 C. albicans genes were differentially expressed in biliary fluid. Up-regulated genes were enriched in hyphal growth, cell wall organization, adhesion, oxidation reduction, biofilm, and fatty acid and ergosterol biosynthesis. This is the first study to define Candida global gene expression during deep-seated human infection. Successful treatment of cholangitis induced C. albicans genes involved in fluconazole responses and pathogenesis.

16.
Article in English | MEDLINE | ID: mdl-28080993

ABSTRACT

Aspergillus fumigatus is a versatile fungus able to successfully exploit diverse environments from mammalian lungs to agricultural waste products. Among its many fitness attributes are dozens of genetic loci containing biosynthetic gene clusters (BGCs) producing bioactive small molecules (often referred to as secondary metabolites or natural products) that provide growth advantages to the fungus dependent on environment. Here we summarize the current knowledge of these BGCs-18 of which can be named to product-their expression profiles in vivo, and which BGCs may enhance virulence of this opportunistic human pathogen. Furthermore, we find extensive evidence for the presence of many of these BGCs, or similar BGCs, in distantly related genera including the emerging pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, and suggest such BGCs may be predictive of pathogenic potential in other fungi.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.


Subject(s)
Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Multigene Family , Aspergillus fumigatus/metabolism , Virulence
17.
Front Microbiol ; 6: 1338, 2015.
Article in English | MEDLINE | ID: mdl-26696964

ABSTRACT

Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100-500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by different challenge antibiotics.

19.
Genome Announc ; 3(2)2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25883274

ABSTRACT

Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A. flavus is the second leading cause of aspergillosis in immunocompromised human patients. Here, we report the genome sequence of strain NRRL 3357.

20.
PLoS Pathog ; 11(4): e1004834, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25909486

ABSTRACT

Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Azoles/pharmacology , Drug Resistance, Multiple, Fungal , Hydroxymethylglutaryl CoA Reductases/metabolism , Mixed Function Oxygenases/metabolism , Sterol 14-Demethylase/metabolism , Animals , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/isolation & purification , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/pathogenicity , Azoles/therapeutic use , Crosses, Genetic , Drug Resistance, Multiple, Fungal/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Mating Type, Fungal/drug effects , Genetic Loci/drug effects , Hydroxymethylglutaryl CoA Reductases/genetics , Itraconazole/pharmacology , Itraconazole/therapeutic use , Larva/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mixed Function Oxygenases/genetics , Moths/drug effects , Mutation , Sterol 14-Demethylase/genetics , Survival Analysis , Triazoles/pharmacology , Triazoles/therapeutic use , Virulence/drug effects , Voriconazole/pharmacology , Voriconazole/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...